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Audio Design

Clearing a path through
the complex numbers
used in audio design.

By John Linsley Hood

ONE of the features of audio circuitry,
with the partial exception of audio power
amplifiers which are largely flat frequency
response devices, is that some modifica-
tion of the gain/frequency characteristic is
needed to correct for uneven recording or
replay frequency responses, or to em-
phasise or exclude desirable or unwanted
parts of the frequency spectrum. This is
done by inserting a combination of
resistors and capacitors (or inductors) in
the signal path, or, possibly, in the feed-
back path around an amplifier. This is a
very powerful technique, and with suffi-
cient ingenuity in the circuit design, all
sorts of shapes of frequency response can
be achieved. However, it requires the
ability to do reasonably accurate calcula-
tions of systems using capacitors or induc-
tors in combination with resistors, and
this immediately runs into the problem of
the phase shifts which occur within such
networks. I will explain.

If one passes an alternating current
through a series combination of a resistor
and a capacitor or a resistor and an induc-
tor, the voltages developed across the two

A

components will be 90° out of phase with
each other. I have shown this graphically
in Fig. 1a and 1b. Also, while the voltage
developed across a capacitor will ‘lag’ in
phase in relation to the current flowing
through it, (because the voltage across a
capacitor depends on the charge within it
and it takes time for the capacitor to
charge up or discharge), the opposite is
true of an inductor, in which the voltage
will ‘lead’ in phase with reference to the
current (due to the instantaneous genera-
tion of a ‘back EMF’ in an inductor which
seeks to oppose any change in current).
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Fig. | Phase angle relationships in RC and RL
networks.
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Fig. 2 Impdeance diagram for an RC network.

We have seen earlier in this series that
the impedance of a capacitor (Zc) is
related to its capacitance and the
operating frequency by the equation Z_ =
1/2pifC. Similarly, the impedance of an
inductor Z, = 2pifL, where f is the fre-
quency and C and L are in Farads and
Henries respectively. Because of the ef-
fects of phase shifts, any calculation we
made, say, of the attenuation of an RC or
LC network based on these formulae for
impedance would probably give incorrect
answers, We therefore need a better
method.

The j Symbol

There is, conveniently, a mathematical
trick which enables us to do calculations
which take into account the phase shifts
produced by inductors and capacitors,
and this is the operator i or j, which is
numerically the square-root of -1. Pure
mathematicians call this i to denote the
fact that it is an imaginary number, since
all real numbers give positive values when
they are squared. However, since elec-
trical engineers have already adopted the
symbol i to denote electrical current, we
refer to the square root of -1 as j instead.
The use of this j operator is not as
ridiculous as it might seem, as a way of
describing a 90° phase shift, for the

following reason.

In DC systems, the opposite of a
positive voltage + V is a negative voltage
-V. In an AC system, the opposite of an
instantaneous positive potential (and it is
convenient to refer to such AC potentials
as E to distinguish them from DC voltage
+V) is the same potential half a cycle
(180°) later when it has swung from
positive to negative. A 180° phase shift in
an AC signal therefore has the effect of
multiplying the potential by -1, provided
always that the signal we are talking about
is sinusodial.

Now, if we have two RC (or LC) net-
works in series, both of which produce a
90° phase shift (and two such networks in
series will have a multiplying effect on the
signal just as 2 x Y4 = ), the final ef-
fect is a 180° phase shift (= x -1). If we
want to represent these phase shifts
mathematically, we must find something
which, when multiplied by itself gives the
result -1. The square-root of -1 is just
such a thing. It can therefore be used in
our calculations as a way of denoting 90°
phase shift.

The other bit of shorthand which cir-
cuit engineers normally use in these
calculations is Greek symbol Omega
which appears here as w to denote 2pif,
since these terms nearly always occur
together. The true impedance of a
capacitor or inductor is, therefore, not Z,
= 1/2pifC or Z; = 2pifL, but Z, =
1/j2pifC, and Z, = j2pifL. In shorthand
form this becomes Z_ = 1/jwC and Z, =
jwL.

Since the phase shift produced by the
L or C elements in RC or LC networks is
90°, we can represent the behaviour of
this circuitry in a graphical form as shown
in Fig. 1, as a right angled triangle, where
the *j*’ term denotes the right angled
limb, and this allows us to derive some
further bits of information. Taking the
case of a simple RC series network, as in
Fig. la, the circuit impedances can be
represented as in Fig. 2a, in which the ver-
tical and horizontal limbs represent the
resistive and capacitative impedances R
and 1/jwC respectively. It is unnecessary
to write the *‘j’’ symbol in the capacitance
impedance limb of the drawing; thatisim-
plicit in its position at right angles to the R
limb. From the theorem of Pythagoras,
the length of the hypotenuse, h in Fig 2b,
is the square-root of a* -b?, and from fair-
ly simple trigonometry, the angle @ = Tan
-'b/a, a calculation which a lot of pocket
calculators will do very quickly.
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Returning to our impedance diagram
of Fig 2a, the resultant impedance of our
network is therefore

We can also determine the phase angle, 6,
between the voltage developed across the
network and the current flowing through
it which will lag by 6, which is Tan-
1/wCR. (If C were very large indeed, or R
were very large, the phase shift would be
nearly zero.)

To recapitulate, we can identify the
phase shifting characteristics of Cs and Ls
by coupling the symbol j to their ims
pedance equations, and we can derive the
resultant impedance and phase angle of
these ‘complex’ networks by sorting out
the terms with and without the j symbols,
and using them in simple geometric or
trigonometric calculations. This process
holds good no matter how many Rs, Cs
and Ls we have in our network, it just
becomes more complicated if there are
more phase shifting elements.

The thing, however, which we must
watch, is that we keep the real and the im-
aginary (j containing) parts separate in the
final equation at which we arrive. Now let
us look at some real life examples.
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Fig. 3 Impedance of an RC parallel network.

Impedance Of RC Parallel
Network

If the components were a and b as in Fig
3a, their impedance, when in parallel,
would be

ab

at+b
Therefore, if they are R and 1/jwC, as in
Fig. 3b, their parallel impedance will be

_ (1/jwC). R
Z= 1/jwC F R
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if we multiply the top and bottom of this
equation by jwC, we can get it into the
much more manageable form
- KO
1+ jwCR

The next mathematical dodge is to
get rid of the js in the bottom line of this
equation, so that we can divide it up into
two separate parts, one without js and one
with them representing the in-phase and
the 90° ‘quadrature’ components.

This can be done by using the rela-
tionship

(a+b)(b—b)= az— bz

If it was (a + jb) (a - jb) the result would
be a* + b?, bearing in mind that j* = +1.
The important thing is that j terms have
disappeared. We can, therefore, multiply
the top and the bottom of an equation
containing a j term in the bottom line by a
- jb and eliminate these terms from the
denominator leaving two separate frac-
tions, which meets our original require-
ment for a usable equation. Treating the

= R

Z=7FjaoCR

equation like this, we end up with

R joCR?
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which allows us to calculate both the im-
pedance and the phase angle between cur-
rent flow and voltage, in our CR parallel
network.

Attenuation Of An RC Network

The circuit shown in Fig. 4b is a very ver-
satile one in that, as it stands, it is a useful
‘step’ attenuator network, while if R2 = 0
itis a simple HF attenuator circuit. Look-
ing at the resistor network of Fig 4a, the
attenuation of this would be

Eout Rb + Rc

Ein Ra+ Rb + Rc
By analogy, therefore, the performance of
Fig. 4b will be

Eout 1/jwC + R2

Ein R1 + 1/jwC + R2
and this can be simplified to

Eout 1+ jwCR2

Ein 1+ jwC (R1 + R2)

by multiplying top and bottom of JwC.
Doing the necessary mathematical
manipulation extracts the in-phase and
quadrature components as

Ein 1+ o*C*'R2 (R1 + R2) jwCR
Eout 14 @CHRT+ R2F 14 CHRY 4 R2Y

and if we make R2 = 0, the right hand
side of this equation simplifies to

1 joCR1

1+ *CR12 1 + *C*RN

In this case also we have separated
out the in-phase and quadrature com-
ponents, so that the transmission factor is
obtained by doing a square-root of the
sum of the squares of these, and the phase
angle of the output is given by

uadrature
Tan—1 ( n-phase )

It is always useful, when one comes
to the end of an algebraic manipulation
like this, to check that one hasn’t done
anything wildly silly by putting in some
limit values. For example, in the equations
above, consider the effects of C = 0. This
causes the equation to become

Eout _ 4
Ein

_which is what we would expect, (assuming
the load is infinitely high in resistance).
On the other hand, if C is extremely large,

the first example gives
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Fig. 4 Attenuation of an RRC network.
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Eout _ C1 +JQ_C122.RZ__)
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Fig. 5 Characteristics of some common RC net-
works.

Modern programmable pocket
calculators make the task of calculating
the characteristics of such RC networks
relatively easy, once the labour of working
out the maths has been done, and
although 1 haven’t shown any yet, the.aé#
process.of calculation in RL networks is _
very similar. One can then, for example,
write a suitable programme with the’com-
ponent values held in the calculator
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memory, and let the calculator go through
the process for any frequency value which
one enters before pressing the run button.

To remove some of the labour in
calculation I am showing in the composite
Fig. § a selection of RC networks with
their impedance and transmission equa-
tions.

Resistor-Inductor Networks

The method of calculating the perfor-
mance of these is identical to that for RC
networks, except that one uses jwL in-
stead of 1/jwC in the equations. For ex-
ample, the circuits of Fig. 6a and 6b have
transmissions

Eout _ jolL R
Ein R + jolL R+ jwl

respectively, which can be broken down
into the in-phase and quadrature com-
ponents as

and

(wl)? jwLR
R+ (wD)?  R?+ (wl)?
and
R _  julR
R?+ (wl)? R+ (wl)?

In all the equations shown, it is possi-
ble (as I am sure you will have spotted) to
change one kind of network into a simpler
one by putting value of R or C or L equal
to 0. As an example, if we make network
(7) of Fig 5 have values of 0 for C1 and

Eout _ R2
Ein (R1 + R2)

which is what we would expect. Or, by
just deleting C1 (C1 = 0) we will end up
with the equation of a type 3 network,
when there is a resistor across the output.

Some Practical Examples

A lot of the above may have been a bit
dull reading for the non-mathematically
inclined (which, I suspect, is 99% of us)
and may tempt the reader to ask ‘Well,
that’s all very nice, but what real use is it’.
So I propose to show a few examples
where there are some slightly surprising
outcomes from the calculations.

(1) The LC series circuit.
Let us take first the LC series circuit of
Fig. 7. Now it’s impedance is just the sum
of the two bits, Z = 1/jwC + jwL. If we
multiply through by 1 (=jwC/jwC), we
get
1 — ?LC
Z= —aC

This has an interesting characteristic, that
if wLC =1, Z = 0. This condition is met
if w* = 1/LC or w= 2pi square of LC. So,
at resonance, this series LC network looks
like a short circuit. Away from resonance,
there is a quadrature component due to
the jwC term in the bottom line, which
causes the phase of the transmitted signal
to swing from + to - as the input passes
through resonance.

o= T/
o—{|—ms—>0 b
Z=0

Fig. 7 LC series resonant circuit.

(2) The Wien network.

This interesting and useful circuit, shown
in Fig. 8, and the basis for a lot of
oscillator designs is basically a network of
the type shown in Fig. 5 (1) in series with
one of the 5(2) type, with both Cs and
both Rs being of the same value. Since we
have already worked out the impedance
characteristics of 5(1) and 5(2), we can
write down the output, as a proportion of
the input using the familiar a/(a+b)
form, where 5(2) is a,

= i
th=7m/CR
Eout = ' Ein

with no phase shift.

I

Fig. 8 The Wien nerwork.

Ein Eout

L

and 5(1) is b.
This gives the rather unwieldy look-
ing equations

R

Eout _ 1+ jwCR
Ein R 4+ 1+jwCR
1+ jwCR juC

! CR
ij

_JWCR_ 41 +jwCR

1+ jwCR
fortunately, this simplifies to:-
Eout _ joCR
Ein 1 — (wCR)? + 3jwCR

when (wCR)? = 1 ‘or wCR =1, since
(square root of 1=1)’ this becomes,

Eout _ jwCR _ 1
Ein 3jwCR 3

with no ‘j’ terms left. Now wCR (= 2pif-
CR) =1 when f =1/(2piCR), which gives
the frequency at which the Wien network
output is in phase with the input, and has
a magnitude of 1/3 that of Ein.

(3) The Sallen and Key active filter.

This is one of the archetypes of the class
of circuit known as active filters, and is
valuable because it can be built with a
single op-amp in the form shown in Fig.
9a or 9b. These are high-pass and low-pass
versions of the filter. The behaviour of the
circuit is such that the gain is subtaintially
level (and x1) at frequencies above, or
below, some critical turnouver frequency
— depending upon whether we are using a
high-pass or low-pass arrangement — but
beyond this frequency the gain falls at
-12dB/octave, as shown in 9¢ and 9d. If
we substitute impedance ‘blocks’ for the
Rs and Cs, as shown in 9e, we can work
out a model for the analysis of the circuit
using the ‘j’ techniques described above.
However, to simplify your calculations we
will assume that our amplifier is an ideal
one with unity gain, and has an infinitely
high input impedance and a negligibly low
output impedance.

We can derive the following relationships.

Lin=Eout+(i,+2)21+i,Z2. ....(1)
and Eout=i,Z4 therefore i,
=EQUt/ 74 1 e TS (2)

also il=(Ex—Eout)/Z3 and
(Ex+Eout)=i,Z2

Therefore il=i,Z2/Z3. ......... (3)
From (1) and (2

..............................

EBin=Eout+i,Z1Z22/Z3 +i,Z1 +[222( )
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and from (4) and (2) Several things can be deduced from  This gives us a means of calculating the
Fin= Eout (1+Z122/Z37Z42+ this: where f = 0 (w = 0) the outputis 1/1 performance of this filter circuit over a
Z1/Z4+72/74) (5) (unity gain at VLF), where w (C1 C2 R1 range of frequencies, of determining what
""" R2) = 1 the denominator is at its smallest, its turn-over frequency will be, and of
Therefore Ei am.:l t!]e output is therefore at a maximum. predicting (pe circuit Q at that frequency
A R This is the turn-over frequency where f = (for an optimally flat responsé from a 2
Eout 1/2pi square root of R1 R2 C1 C2, and at element filter of this type, Q should be
this point the output of the circuit is 1/square root of 2 or 0.707).
1 1/jwC2 (R1 + R2), which can call the ‘Q’ 1 have only gone through the calcula-
1 Z1 72 7y o of the circuit. tions for a low-pass filter in this instance,
— + — —_ i There is one further small trick which but the high pass version will follow if ap-
l Z4 Z4 Z374 can be done with this calculation. Suppose propriate R2 and Cs are put in place of the
we say that x = R1/R2and y = Cl1/C2, Zs.
' Z374 then R1 = xR2 and C1 = yC2, and sup-
f pose that we call the frequency at which  Conclusions
Z3Z4 + 72173 + 2273 +27172 -(6) w(Cl Cr Rl R2) = 1, w, then w,’ = The use of the *‘j** operator, to simulate

1/xy(C2R2)* and w, = 1/C2 R2pixy. = mathematically the effect of the phase

We S flow i 1 the R nd £/ Cs Also, our middle term jwC2(Rl + R2)  shift in an inductor or capacitor allows

in'place’ of TeZRREE Ret the for vl becomes jwC2R2(1 +x). : useful and instructive calculations to be

’ o o gt e 4 Let us now express our equation for made on networks which contain Ls and
for the real circuits. In the case of the low- : 3 !

ss filter, Ob and 9d), where Z1 = RI frequncy as a fraction of.wo, the turn-over Cs as well as resistances. With a program-

pa ’ ’ : frequency, we can find that.. .(7)  mable calculator, to take the labour out of

Fig. 9 Sallen and Key type active filters.

IZ}:CZRZ and Z3 = 1/jwCl and 24 = becomes, the repetitive calculations, it becomes
bl Eout _ 1 practical to calculate a frequency response
Eout = o ,  — and phase shift — for any network
- Ein 1+j _w_(]_ﬂ = (‘9 which one has the patience to work out.
Ein @0 /Xy "y This then, should allow us to explore the
' 1 i . performance of our circuitry, while it is
1+ jwC2(R1 + R2)—«*(C1C2R1R2) (7) andthe‘Q, or gainat f,, still at the ‘drawing on paper’ stage, and
i (when w=wy,) V/xy thus avoid surprises! |
1+x
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